第74章 新方法(1 / 2)
第76章 新方法
“还有其他的求近逼值方法么?”
看着李普希极数法所求出来的反值,梁云有很是苦恼。
引力子的压力活性数值用物理形式他无法求出来,退而求次改用数学来求引力子的压力活性数值的近逼值。
用近逼值来换算压力活性数值,以其来达到解题的目的。
但是,李普希极数法所求出来的近逼值并非是正值,而是反值。
这就说明,近逼值求法中的李普希极数法不适用于引力子的压力活性数值的求解。
他必须换一个近逼值的求值方法,来求取引力子的压力活性数值的近逼值。
至于换成那个近逼值求值法,目前梁云还没有头绪。
阻尼波方程一致性引力子存在性问题卡在了引力子的压力活性数值,这让他很烦躁。
自从得到系统之后,梁云已经很久没有尝试过被一道题掐这么久了。
他解阻尼波方程一致性引力子存在性问题已经有整整一个月有余了,但是直到现在他还没解出来。
让他的心情变得十分的烦躁。
毕竟,被一道题掐了一个月有余,换作是谁都会十分烦躁。
“不行,这个求近逼值法也不行……”
用笔刷刷的将一大串式子挂掉后,梁云脸色变得更加的躁动。
重新换了一个求近逼值方程式后,依旧无法求出压力活性数值的正值近逼值。
“为何两种求近逼值法所得出的都是反值,难道压力活性数值无法用近逼值来代替?”
经历了两次求近逼值失败,梁云对于用近逼值来换算压力活性数值的方法产生了怀疑。
随后他从头到尾地将阻尼波方程一致性引力子存在性问题的求解算式看了一遍。
“可是从整体的算式来看,明明可以用近逼值来替代压力活性数值进行解题的,到底是哪一个步骤出错了?”
发现总体的求解算式并没有问题,但是就是不知道为何所求出来的近逼值是反值。
“为什么?”
“为什么会是反值呢?”
“怎么求出来的是反值呢?”
看着那让人无法理解的反值,梁云有些怀疑人生。
“难道是我算错了?不应该呀,数学LV4的我怎么可能算错,而且近逼值求值法也不难。”
在算数方面,梁云很少会算错的,但是连续两次算出反值,这让他不得不怀疑自己是否是算错了。
随即他立马重新算了一遍。
重新算的结果是让他安心的,他的算数水平没有问题,结果是对的,就是反值。
但是这个结果反而让他更加的无奈。
他宁愿自己的算数水平出错了,也不想看到这个反值结果。
“唉……好烦!”梁云叹息一声,烦躁地挠了挠头。
“同学,同学……”
这时背后有人叫他。
“干嘛!”