第二十章 欧几里得算法(2 / 2)
欧几里得说:“所以说,相当于没有最大公约数。”
在以上基础上,后来数学中发展了环的概念,整环r是符合一下接个要求的:
1、a关于加法成为一个abel群(其零元素记作0);
2、乘法满足结合律:(a*b)*c=a*(b*c);
3、乘法对加法满足分配律:a*(b+c)=a*b+a*c,(a+b)*c=a*c+b*c;
如果环a还满足以下乘法交换律,则称为“交换环”:
4、乘法交换律:a*b=b*a。
如果交换环a还满足以下两条件,就称为“整环”(integraldomain):
5、a中存在非零的乘法单位元,即存在a中的一个元素,记作1,满足:1不等于0,且对任意a,有:e*a=a*e=a;
6、ab=0=>a=0或b=0。
而后来也引入了欧几里得整环的概念,这是抽象代数中,这是一种能作辗转相除法的整环。凡欧几里得整环必为主理想环。