小说猫
会员书架
首页 > 玄幻小说 > 数学心 > 第四十二章 祖冲之的圆周率

第四十二章 祖冲之的圆周率(2 / 2)

上一页 章节目录 加入书签 下一章
好书推荐: 穿越仙界之门  美漫:开局调查神盾局长税务问题  畅游诸天影视  明末之天降神兵  农门锦鲤妻的娇宠日常  网游之超神驯兽师  重生动画大时代  这个忍界不正常  克死前夫后我成了心软的神  兽语小村医 

祖冲之知道自己需要再找到一个办法来更仔细的寻找圆周率的数值,这个数值需要一个特别的方法。就是刘徽的割圆术。割圆术就是让多边形原来越多,几乎变成圆形,求多边形的边长后,直接除以半径来得到相对准确的圆周率。

刘徽的割圆术是在圆中的内接6变形开始的,在此基础变成12、24、48变形,一直往下走,所以最终计算了3072边形的结果,得到了π=3.1416这样的数值。刘徽知道圆割的越细,就会越准确,直到不能再割的时候,就准确了。

祖冲之当然知道把圆画大点,割的多边形更多点就会得到正确结果了。

所以自己在家里画了一个直径为1仗的大圆,用刘徽的割圆术割出了12288边形,一个是外接圆,一个是内接圆,那圆的边长当然处于外接和内接之间。外接圆长度为3仗1尺4寸1分5厘9毫2丝7忽,这是盈数,内接圆长度为3仗1尺4寸1分5厘9毫2丝6忽,这个是小数。所以圆周率就在这两个数字之间。

祖冲之当然可以再往更加精细的地方进行计算,只是绝对圆周率的数字再这样计算下去,也没有意义了。只要用密率就完全足够解决很多问题了。自己算出的这个祖率,在很多粗糙的工程上都用不到。

所以数学,在无理数这件事情上,永远无法精确解决,怎么办?只能是近似解决而已。数学上很多东西都只能是近似解决。

上一页 章节目录 加入书签 下一章
书单推荐: 开局召唤第四天灾,打造最强仙宗 第6文明 葫芦成精后,种田发家燃爆异世 我有十八个罪恶师父 ra3之异世冒险 开局签到混沌剑体,诸天无敌 洪荒之人道系统 时与空1永恒的不朽神殿 大帝之下我帝境,大帝之上我开挂 小美人鱼的末世生存手札
返回顶部